Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
نویسندگان
چکیده
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develop new local discontinuous Galerkin methods for the time dependent bi-harmonic type equations involving fourth derivatives, and partial differential equations involving fifth derivatives. For these new methods we present correct interface numerical fluxes and prove L 2 stability for general nonlinear problems. Preliminary numerical examples are shown to illustrate these methods. Finally, we present new results on a post-processing technique, originally designed for methods with good negative-order error estimates, on the local discontinuous Galerkin methods applied to equations with higher derivatives. Numerical experiments show that this technique works as well for the new higher derivative cases, in effectively doubling the rate of convergence with negligible additional computational cost, for linear as well as some nonlinear problems, with a local uniform mesh. Key words, discontinuous Galerkin method, partial differential equations with higher derivatives, stability, error estimate, post-processing Subject classification. Applied and Numerical Mathematics
منابع مشابه
Superconvergence of Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives
In this paper we review the existing and develop new local discontinuous Galerkin methods for solving time dependent partial differential equations with higher order derivatives in one and multiple space dimensions. We review local discontinuous Galerkin methods for convection diffusion equations involving second derivatives and for KdV type equations involving third derivatives. We then develo...
متن کاملA discontinuous Galerkin finite element method for time dependent partial differential equations with higher order derivatives
In this paper, we develop a new discontinuous Galerkin (DG) finite element method for solving time dependent partial differential equations (PDEs) with higher order spatial derivatives. Unlike the traditional local discontinuous Galerkin (LDG) method, the method in this paper can be applied without introducing any auxiliary variables or rewriting the original equation into a larger system. Stab...
متن کاملLocal discontinuous Galerkin method for distributed-order time and space-fractional convection-diffusion and Schrödinger type equations
Fractional partial differential equations with distributed-order fractional derivatives describe some important physical phenomena. In this paper, we propose a local discontinuous Galerkin (LDG) method for the distributedorder time and Riesz space fractional convection-diffusion and Schrödinger type equations. We prove stability and optimal order of convergence O(h + (∆t) θ 2 + θ) for the distr...
متن کاملA discontinuous Galerkin method for the Cahn-Hilliard equation
A discontinuous Galerkin finite element method has been developed to treat the high-order spatial derivatives appearing in the Cahn–Hilliard equation. The Cahn–Hilliard equation is a fourth-order nonlinear parabolic partial differential equation, originally proposed to model phase segregation of binary alloys. The developed discontinuous Galerkin approach avoids the need for mixed finite elemen...
متن کاملDiscontinuous Galerkin finite element differential calculus and applications to numerical solutions of linear and nonlinear partial differential equations
This paper develops a discontinuous Galerkin (DG) finite element differential calculus theory for approximating weak derivatives of Sobolev functions and piecewise Sobolev functions. By introducing numerical one-sided derivatives as building blocks, various first and second order numerical operators such as the gradient, divergence, Hessian, and Laplacian operator are defined, and their corresp...
متن کامل